Selective selC-Independent Selenocysteine Incorporation into Formate Dehydrogenases
نویسندگان
چکیده
The formate dehydrogenases (Fdh) Fdh-O, Fdh-N, and Fdh-H, are the only proteins in Escherichia coli that incorporate selenocysteine at a specific position by decoding a UGA codon. However, an excess of selenium can lead to toxicity through misincorporation of selenocysteine into proteins. To determine whether selenocysteine substitutes for cysteine, we grew Escherichia coli in the presence of excess sodium selenite. The respiratory Fdh-N and Fdh-O enzymes, along with nitrate reductase (Nar) were co-purified from wild type strain MC4100 after anaerobic growth with nitrate and either 2 µM or 100 µM selenite. Mass spectrometric analysis of the catalytic subunits of both Fdhs identified the UGA-specified selenocysteine residue and revealed incorporation of additional, 'non-specific' selenocysteinyl residues, which always replaced particular cysteinyl residues. Although variable, their incorporation was not random and was independent of the selenite concentration used. Notably, these cysteines are likely to be non-essential for catalysis and they do not coordinate the iron-sulfur cluster. The remaining cysteinyl residues that could be identified were never substituted by selenocysteine. Selenomethionine was never observed in our analyses. Non-random substitution of particular cysteinyl residues was also noted in the electron-transferring subunit of both Fdhs as well as in the subunits of the Nar enzyme. Nar isolated from an E. coli selC mutant also showed a similar selenocysteine incorporation pattern to the wild-type indicating that non-specific selenocysteine incorporation was independent of the specific selenocysteine pathway. Thus, selenide replaces sulfide in the biosynthesis of cysteine and misacylated selenocysteyl-tRNA(Cys) decodes either UGU or UGC codons, which usually specify cysteine. Nevertheless, not every UGU or UGC codon was decoded as selenocysteine. Together, our results suggest that a degree of misincorporation of selenocysteine into enzymes through replacement of particular, non-essential cysteines, is tolerated and this might act as a buffering system to cope with excessive intracellular selenium.
منابع مشابه
Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in Escherichia coli
Escherichia coli synthesizes three selenocysteine-dependent formate dehydrogenases (Fdh) that also have a molybdenum cofactor. Fdh-H couples formate oxidation with proton reduction in the formate hydrogenlyase (FHL) complex. The activity of Fdh-H in solution can be measured with artificial redox dyes but, unlike Fdh-O and Fdh-N, it has never been observed by chromogenic activity staining after ...
متن کاملOccurrence and functional compatibility within Enterobacteriaceae of a tRNA species which inserts selenocysteine into protein.
The selC gene from E. coli codes for a tRNA species (tRNA(UCASer] which is aminoacylated with L-serine and which cotranslationally inserts selenocysteine into selenoproteins. By means of Southern hybridization it was demonstrated that this gene occurs in all enterobacteria tested. To assess whether the unique primary and secondary structural features of the E. coli selC gene product are conserv...
متن کاملIn vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB.
The special elongation factor SelB of Escherichia coli promotes selenocysteine incorporation into formate dehydrogenases. This is thought to be achieved through simultaneous binding to selenocysteyl-tRNASec and, in the case of formate dehydrogenase H, to an fdhF mRNA hairpin structure 3' adjacent to the UGA selenocysteine codon. By in vitro selection, novel RNA sequences ("aptamers"), which can...
متن کاملThe nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli.
The UGA codon, usually a stop codon, can also direct the incorporation into a protein of the modified amino acid selenocysteine. This UGA decoding process requires a cis -acting mRNA element called 'selenocysteine insertion sequence' (SECIS) that can form a stem-loop structure. In Escherichia coli the SECIS of the selenoprotein formate dehydrogenase (FdhH) mRNA has been previously described to ...
متن کاملInvestigation of Escherichia coli Selenocysteine Synthase (SelA) Complex Formation Using Cryo-Electron Microscopy (Cryo-EM)
Incorporation of selenocysteine (Sec U) into proteins is directed by a in-frame UGA codon in all domains of life. In Bacteria, Sec biosynthesis and incorporation involves the interaction of Selenocysteine Synthase (SelA), tRNA (SelC or tRNA Sec ), Selenophosphate Synthetase (SPS), a specific elongation factor known as SelB and the specific mRNA structure SElenocysteine Insertion Sequence (SECIS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013